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A calculation technique is developed for evaluating the intensity of pressure 
pulsations, longitudinal pressure drop, and gas content in a two-phase adi- 
abatic flow. Calculations are compared to experimental data. 

The motion of two-phase mixtures is accompanied by stable and very s~gnificant pulsa- 
tions in pressured friction on the channel walls, gas content, and other flow parameters 
[1-9]. They develop because of a characteristic feature of two-phase flows -- the nonstation- 
ariness of the motion of the individual gases [4~ 9-ii]. 

The study of nonstationary processes in a two-phase flow stabilized by external condi- 
tions is important both for clarification of features of flow hydrodynamics, and for evalua- 
tion of the dynamic effect of the flow upon components of heat exchange equipment employing 
two-phase heat exchange fluids. 

In the present study we will employ a nonstatlonary homogeneous flow model [10-12]. A 
one-dimensional adiabatic stabilized two-phase flow in a channel of constant section will be 
considered in the absence of volume gravitational forces. In accordance with these assump- 
tions, the equations of motion and flow continuity have the form 

V3 2 0~rnix O~mi x __ OP _ ~ Pmix mix (i) 
P m i x ~  + PmixWmix ~ ~ dz - 2d ' 

0~'mix' OPmixr~) mix 0. ( 2 )  
Ot Oz 

Adding Eq. (2), multiplied by Wmix, to Eq. (I), and considering the well-known relationships 
of the homogeneous flow model: 

Gmi~, Gmix = O~ + ~ ,  Onyx= P~ (1 - -  fi) + p~fi, 
Wmiff- FPmix 

we obtain 

(3) 

Gn-/x ~mix 1 0P _ I /' ~Omi x d G m i x ~ m i x  @ ~ . ( 4 )  

The flow parameters are considered to be random functions of ergodir random processes. 
In this case the statistical average of the parameters over the set of random functions 

= i ~(~)dx, (5) 

where P(X) is the distribution density of the ergodic process X, may be replaced by the 
average of a single realization over a sufficiently long time interval 

T 

' i  ~=~= !i~--~- x(Odt. (6) 
0 

In the future, we will make use of certain properties of the averaging operations of 
Eqs. (5), (6). Let X and H be ergodic random processes, so that [13, 14] 
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%----X, X+~I=X+~I, Z'~l=X:% 
(7) 

Here o X is the mean square deviation of the random process X and r is the mutual correlation 
coefficient of the random processes X and H. 

For the subsequent analysis it is convenient to represent the flow parameter oscilla- 
tions as the sum of averaged and pulsation components 

= f - +  z'. (8)  

Transforming in Eq. (4) to the notation of Eq. (8), we obtain for the pulsation component of 
the pressure gradient the following expression: 

�9 (9) 
OP' I r a O ' m i x  ~ . a~mix_L - a c ~ ,  aOm~x~'~n~ + ~ (~ , + - b  O" + " " " - - "  " " 
Oz -- F [ - - ~ - -  ~- ~rnzx Oz " Wrn ix - - -~  ~ az mix mix mix mix % i x ~ r n i x -  %x~Zmix  ) 

In [15, 16] experimental data were used to show that the oscillations of the basic hydrody- 
namic parameters of a two-phase flow are related to a wave process of structural feature 
transfer in the flow (motion of bubbles, implements, waves in the wall structure, liquid 
droplets). The propaga_tion rate of these structural waves c can be uniquely related to the 
mean mixture velocity Wmi x and the flow volume gas content of the flow 8o [16]. 

Using the relationship 

a x '  _ I a ) (  , ( l O )  
Oz c at 

we obtain a first-order differential equation for the pressure pulsations at an arbitrary 
point of the two-phase flow 

OP' . c  .{OGmix 1[_ @m~nix_-- c)Gmix OGmix~,mix] 
--Or ~ F Ot c [ Gmix---O~ -1- Wmi x -~{ :4- Ot 

+ -TJ- (5~x ~ ~x~+-~ ~ o '~x+ C.m~x'~- - c ' , ~  :~ ~ , ' !  ] .  (11) 

Thus, to  find the pressure pulsation intensity it is necessary to determine the char- 
acter of the oscillations in flow rate Gmi x and velocity Wmi x. To do this, the subsequent 
analysis uses a heuristic approach O f minimization of dissipative energy losses in the flow 
in question. We are certain that this approach is possible because it has been used success- 
fully in analysis of several averaged hydrodynamic parameters of two,phase flows in [10-12, 
15, 17-19]. 

The flow power dissipated due to friction per unit channel length (~N/~z) is proportional 
to the product of the flow velocity times the longitudinal pressure gradient generated by 
friction forces, and defined by the last term on the right side of Eq. (I). Taking the ratio 
of this power to the power dissipated by friction in an ideal pulsation-free homogeneous flow 
(~N/~Z)hom, after the transformations described in [i0-12], we obtain a dimensionless energy 
parameter characterizing energy dissipation in the pulsating two-phase flow: 

E = ( ~ z )  _ G~ +(1 -+-yo)ZG2 3 _  -}-(3-+-2yo) G2G2 + ( 1  + Yo)(3 + Yo)G~G~ (12) 
aN ] - (~,)3+(1 +yo)2 (O)3+(34-22o) (G , ) z (G2)+(1  + 7o)(3+?o)G,(G~_) 2 
az ]hom 

Application of the technique of minimizing dissipative energy losses referred to above reduces 
to a search for fl__ow parameters which produce the smalle_st possible value of the averaged 
energy parameter E for specified mean flow rate values G, and G~, and also the parameter yo, 

Applying the averaging operation of Eq. (5) to Eq. (12) and considering Eq. (7), we obtain 

'L' = 1 + {/<2 (I -- Xo) 2 (3 + 2XoYo) + K 2 (1 + '70) (3 -'1- 2XoYo -{- Yo) + (13) 

2rK,K2 (1 - -  Xo) Xo (3 + 2'70 + 2Xo'7o + Xo'7o2)} {(1 - -  Xo) a + (1 + '7o)ZX~ + ( 1 - -  Xo)2Xo (3 ~ 2'70) + (1 - -  Xo) Xo 2 (3 -r "70) (1 -]- Wo)}- t 
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Here xo = ~2/(G~ + ~a) is the flow mass gas content; K i = ~ /G--i, i = i, 2, arevariation co- Gi 
efficients; while r is the mutual correlation coefficient of the above phase flow rates. 

Minimizing the quadratic form (13) for parameters r, K~p and K~ with consideration of 
the limiting inequalities 

- - l < r ~ l ,  

0 ~- Ki ~ Kmax ' (14) ,  

0 ~_ K 2 ~  Kmax , 

we obtain the following results. 

i. The phase flow rate correlation coefficient r = --i. Physically, this means that 
pulsations in liquid and gas flow are "out of phase" and related as follows 

c ;  _ ~; (15) 
~G~ GG 

2. The phase flow rate variation coefficients are related to the mass gas content in 
the following manner: 

for 0~-~xo~Xliml, 

Ki = 

for Xlim1~ xo~xlima 

Xo [3 + 2Xoyo + Yo (2 + xoyo)] Kma x, K~ -~ ffmax ; 
(1 - -  XO) (3 + 2Xo?o) 

for Xlima.~xo~! 

Ki = Kmax; K2 = 

Here Xlim: and Xlima 

Kl=/ (max,  K s = K m a  x ; 

(1 - -  Xo) [3 + 2Xo~'o + ?o (2 + -~o?o)l 
Xo (1 + %) (3 + 2xoy. + Yo) 

are the limiting values of mass gas content 

Kmax " 

(16) 

(17) 

(18) 

~"~(Yo + 1) (Yo -}-3) - -  3 
Xliml = Vo (% -]- 4) ' (i9) 

Xlim2 
(1 -b- Yo) l / 3  (3 + 2yo) - -  (3 + 2yo) 

Yo (4 + 3~o) 

In [12] these values were related to transitions from bubble to charge flow and from 
charge to disperse-ring flow. 

It follows from the structure of Eqs. (16)-(18) that the parameter which defines the 
pulsation processes is the magnitude of the greatest possible value of the phase flow rate 
variation coefficient Kma x. To determine this value we utilize the condition of absence of 
reverse flows of liquid and gas, found experimentally in [2]. In the case under considera- 
tion this condition can be expressed as 

JG;J~G~;  i = 1, 2. (20)  

Moreover, to find the value of Kma x it is necessary to know either the time dependence of 
the phase flow rate G'i(t) or G'a(t), or the pulsation distribution density of these flow 
rates p(G':) or p(G'a). These functions are not known a priori, and cannot be directly de- 
termined experimentally at present. 

However, as follows from analysis of experimental data (Fig. I), the pulsations of the 
flow parameters have the form characteristic of the superposition of a harmonic process and 
a random noise [14]. In connection with this fact, it is useful to consider two limiting 
cases. 

I. The phase flow rate pulsations are a harmonic process with a random initial phase. 
With consideration of Eq. (15), such oscillations may be described mathematically by 
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Fig. i. Distribution density of pulsations in true volume gas 
content: i, 2) calculation with models of harmonic and chaotic 
phase flow rate oscillati_ons; 3) experimental distribution 
histogram, P = 0.i MPa, we = 0.55 m/sec. 

Fig. 2. Mean-square intensity of pulsations in longitudinal 
pressure drop versus flow volume gas content: i, 2) calcula- 
tions for harmonic and chaotic models of flow rate oscillation; 
3) experimental data [16], P = 0.16-0.2 PMa, we = 2.0-2.5 
m/sec, OAp , MPa. 

G[ = ]/  2 K~G, sin 2~[ot, 

G~ = - -  V 2 K202 sin 2~[ot. 

(21) 

Using Eqs. (20), (21) to define the value of the greatest possible phase flow rate variation 
coefficient, we obtain Kma x = i//2. 

2. The pulsations in the liquid and gas flow rates are a purely chaotic process. The 
normalized autocorrelatlon function of such a PrOcess is a 6-function, and the distribution 
density, as follows from the central limit theorem of probability theory [13, 14], must be 
close to the density of a normal distribution law 

p(G:)-- 2~KiGil exp ( 2G~";2..i i ) ,  i : 1 , 2 .  (22)  

Using the "three sigma" rule of [13], for the condition of practical impossibility of reverse 

phase flows we obtain Kma x = 1/3. 

The conclusions made relative to the phase flow rates Gi permit us to use Eq. (3) to 
determine the character of oscillations in the total flow Gmi x and the velocity Wmi x of a 
two-phase flow as functions of the flow regime parameters. 

When the model of harmonic pulsations of phase flow rates is used, Eq. (ii) can be inte- 
grated. In this case the intensity of the pressure pulsations, i.e., the value of the mean- 
square deviation, is found from Eqs. (6), (7). 

When purely chaotic pulsations are considered, we use well-known relationships for inte- 
gratlon of random functions [13], which also permit determination of the pressure pulsation 
intensity. 

Combining the results in one formula, we obtain 

~. = pi=ommix a _ 1 - -  b -F qi (ab) z + q2 \ 4--~o / (a--b)2+ , (23) 
Wmix 

where 

a :  l - - x o )  Kl- -xoK2;  (24) 
b : xoK~(1 + Vo)- - (1 - -xo)Kt  . 

, ( 2 5 )  
1 -F XoYo 

where the coefficients q, and qa_are --equal to 0.5 and i in the hanuonic model and to 2 and 0 
in the chaotic pulsation model; we = Gmix/Fpt is the circulation velocity. 
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An evaluation of the intensity of pulsations in the longitudinal pressure drop in the 
flow is also of significant practical interest 

~Ap = V [ P '  ( z ) -  P '  (z : 0)] 2 . (26)  

Introducing the concept of a longitudinal (along the z axis) correlation coefficient: 

P '  (z) P '  (z = O) (27)  
r p  = p ,---2 ' 

after obvious transformations we obtain 

~Ap = ~p U 2  (I --rp) . ( 2 8 )  

The dependence of the correlation coefficient rp upon z was studied in [4, 5]. It was 
shown that at sufficiently high z (of the order of 1 m) the value of rp tends to zero. In 
this case Eq. (28) takes on the following form: 

~Ae : ~2-op (29)  

Figure 2 shows a comparison of calculated (using Eqs. (23)-(29)) and experimental data~ the 
latter presented in [16], on the value of the mean-square intensity of longitudinal pressure 
drop pulsations. 

The technique developed also permits calculation of the intensity of pulsations in the 
true volume gas content of the two-phase flow 

2 - - (30) 
% = e= _ (~)2, 

where 

T 

I -4 = l i~  ? -  ~at  = ~7, (G;) dG;. ; 

T 

(31) 

(32) 

The instantaneous values of the true gas content in the first homogeneous approximation 
can be expressed in terms of instantaneous values of the phase flow rates with the formula 

= ~ = G2 (33) 
G2 + Oi (1 + %)-~ 

With use of the model including harmonic pulsations of the phase flow rates, Eqs. (31)-(33) 
give the following results: 

=~0 K2+h--K~Vi= 2h2 
h ] / ]  - -  2h 2 ' (34)  

~z hu L (1 - -  2h2) a/2 + K~ . (35)  

Here h = (i -- 8a)K~ - -  8oKa. 

It should be noted that Eq. (34) for ~ coincides with the expression for true volume gas 
content presented in [ll, 12] and confirmed for vapor and gas--liquid flows in tubes and chan- 
nels at sufficiently high Froude numbers. 

When a flow with chaotic oscillations of the phase flow rates and the distribution den- 
sity (22) is considered, the improper integrals in Eqs. (31), (32) cannot be determined ana- 
lytically, so they were calculated numerically with a computer, 

Results of analytical and numerical calculations of the mean square values of pulsations 
in gas content ~ for P = 0.16 MPa for the cases of sinusoidal and chaotic oscillations of 
phase flow rates are shown in Fig. 3. Also shown are experimental data obtained by gamma 
scintillation of an air-water flow in a vertical tube 20 ram in diameter at P = 0.16 MPa and 
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Fig. 3. Mean-square intensity of pulsations in true 
volume gas content versus flow rate volume gas con- 
tent: i, 2) calculation with models of harmonic and 
chaotic phase flow rate oscillation_s, respectively; 
3) experimental data, P = 0.1 MPa, we = 0.5-1.5 m~ 
sec. 

wo = 0.5-1.5 m/sec. The radiation source was the isotope Am-241 with activity of 0.55 Ci. 
The high level of gamma quantum count, the scintillation radiation detector, and secondary 
apparatus provided reliable fixation of the density of the two-phase flow in the tube with a 
time constant of 20-30 msec, which is an order of magnitude less than the observed periods 
of the pulsations ~. The experimental values of ~ were determined by processing oscillograms 
of the flow density pulsations using mathematical statistics methods [14] on a computer. 

It is evident from Fig. 3 that Just as for pulsations of the longitudinal pressure drop, 
the experimental values of 6~ are located for the most part between the two calculated lines 
corresponding to harmonic (upper curve) and chaotic (lower curve) laws of phase flow rate 
change with time. 

Thus, the technique developed herein permits calculation of upper and lower limits for 
the numerical values of such pulsation hydrodynamic characteristics of two-phase flows in 
channels as up, qAp, and ~, a knowledge of which is often required in engineering practice 
to evaluate the intensity of vibrationsln heat exchanger construction as well as pulsations 
in temperature and other parameters of two-phase flows. 

NOTATION 

z, coordinate in direction of flow; t, time; T, period of averaging; d and F, diameter 
and cross-sectional area of flow channel; ~, friction coefficienti P, pressure; p, density; 
Yo = (P, -- Pa)/P2, reduced mixture density; wo, circulation velocity; Wmlx, mixture velocity; 
G~ mas K flow rate; c, speed of structural wave propagation; 8, volume gas content; 8o ffi G~/ 
[G~ + G~(I + 7o)-~], flow rate volume gas content; p, distribution density; K, variation co- 
efficient; r, correlation coefficient; u, mean square devlation; fo, phase flow rate oscilla- 
tion frequency;;N, flow power; E, energy parameter. Indices I, 2, mix correspond to liquid, 
gas, and mixture; tilde and overbar symbols denote averaging over probability and time; 
primes denote pulsation components. 
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REDUCTION OF HYDRODYNamIC DRAG AND SIZE OF POLYMER PARTICLES 

I. A. Uskov, E. T. Uskova, 
and N. M. Belova 

UDC 532.5.0i3.12 

The influence of =he size of polymer particles and =heir number in the deformed 
fluid volume on the Thoms effect is examined in an example of biopolymers of sur- 
face extractions of water animals. 

The reduction of turbulent fluid drag upon the insertion of admixtures of certain poly- 
mers is of national-economic interest. However, despite the numerous attempts of researchers, 
there is no theory of this phenomenon at this time [i], and the physicochemical aspects of 
both the mechanism of the action and the nature of the particles -- =he hydrodynamic activity 
carriers -- have been inadequately studied. The clarification of the fundamental aspects of 
the mechanism of the process, of the most important parameters governing the hydrodynamic 
activity of maeromolecular admixtures, is needed for a practical application of parameters 
in order to reduce the hydrodynamic drag of liquid media. 

Since the hydrodynamic activity of polymers can be considered as the result of polymer 
particle interaction with turbulent formations of the medium, one of the fundamental param- 
eters governing its interaction is the size of these particles. 
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